
PMM U.S.S.R.,Vo1.49,No.5,pp. 602-607,198s 0021-89'8.'85 $lc:.~j+-o.:>i, 
Printed in Great Britain Pergamon Journals Ltn. 

ON AN rNTEG~L EQUATION AND ITS APPLICATION 
THIN DETACHED INCl~SrONS IN ELASTIC 

TO PROBLEMS OF 
BODIES* 

B. I. SMETANIN 

An integral equation of the first kind, that occurs in certain elasticity 
theory problems for bodies with detached inclusions /l/, is examined. 
The structure of its solution is established. The effective solution of 
this equation is constructed by the asymptotic method of "large X" /2/. 
The antiplane problem of the shear of detached bands located in the middle 
plane of an elastic layer is investigated as an example. 

1. We consider the following integral equation: 

(1.1) 

Here q(r) is a function to be determined, and k (t) and f(z) are given functions. The 
kernel of this equation has the form 

The function h,(z) (n = 1,2) in the plane of the complex variable z = IL $- iv are meronorphic 
functions that are real for v = 0. On the v = 0 axis the function A, (~)has the single zero 
u = 0 and has no poles, while the function A*(z) has neither zeros nor poles on the u = 0 axis. 
As 1 u I--t 00 the functions n,,(u) satisfy the condition 

h (u)-+ 1 + 0 (e+Q") (1 u j -+ co; xn > 0; R = 1, 2) (1.3) 

Lemma 1. For ail values of OC< jt I< 0~ the following representation holds: 

k (t) = --In / t 1 - 0,571 sgn t + F (i) (1.4) 
m 

F(t)=S([A,(u)-Ijcosut fill 
+ e-I‘- [lZp(u)- I] sinut};;- (1.5) 

0 

where F(LL') is,. as a function of the complex variable u! = 1 i iz, regular in the strip it i< 
m, ] T ]<x, = min(x,,x,). For 1 t ! <r., the function F(t) can be represented by the absolutely 
convergent series 

F(t) = 5 b,,t” 
n=o 

(1.6) 

To prove (1.41 and (1.5) we must use Eq.CZ2.291 of /2j and the integral i3/ 

The regularity of the function F(t) in the band 17 I<x, results from the properties of 

the functions L(z) and the Theorem A presented in Sect-l.4 of /4/. From the regularity of 
F(w)it'follows that F(t) is continuous with all its derivatives for O,< If I< 00. Expanding 
cosut and sin ut in (1.5: in power series, we obtain the representation (1.6) and the coefficients 

of this expansion in the form 

bo=~[A&)--+-e-‘l~ 
i 

(1.7) 
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b,, = l& 1 [Al (u) - I] LP-’ au (n Z 0) 

b,,+,= &&j [I -&(u)]u”‘du (n=O, 1,. . .) 

Since 1 t I< 2/h, the solution of (l.l), obtained by using the expansion (1.61, will have 

meaning for at least 'h> hr, where h, = 21x,. 

Taking account Of (1.4), we convert the integral equation (1.1) to the form 

1 

S[ In ,e’z, -+ bo--sgn(5--)1q(5)dE=nf(x)- 1 q(@(+)-bb,] G (I~I<l) (1.8) 
-1 -1 

Furthermore, we consider the integral equation 

(1.9) 

As will be shown below, the solution of (1.9) is the principal term of the asymptotic of 
i I _.lution of (1.1) for large values of the parameter h. Ey differentiating (1.9) with 

_.:.< 'I to I we obtain the singular integral equation 

(1.10) 

The solution of (1.10) has the form /5/ 

qt4= Q f’ (4 i l 
n I/TX (I) +--7s 2 s x;:;)(:"fl, dE 

-1 

Q = i q(x)& x (z) = (1 $ 5)1’4 (l-r)% 
-1 

(1.11) 

(1.12) 

The first term on the right side of (1.11) is the solution of the homogeneous equation 

(1.101, consequently the constant Q is arbitrary. 

Formula (1.11) is also the solution of (1.9) under the condition 

To obtain (1.13) we must multiply (1.9) by X-I(-r) and integrate with respect to 5 

between the limits -1 and 1 by using (6.7) from Table A in /l/. 

Furthermore, we need the values of the integral /6/ 

(1.13) 

(1.14) 

Let us investigate the structure of the solution of the integral Eq.Cl.9). 

Theorem 1. If the function f (J) E g., (-1. 1). II 2 0, 0 ( a, then the solution q(J.) of the 

integral Eq.Cl.9) has the form 

q (.r) = 0 (,r) 2’ (L), tin (I) CE c, (-1, 1) (1.15) 

Here H,? (-1. 1) is the space of functions whose n-th derivative satisfies the Holder 

condition with index CL for zf l-1,1], and C,,(-I. 1) is the space of functions whose n-th 
derivative is continuous for x.5 [-I.11 /7/. 

To prove the theorem, we transform (1.11) to the following form by taking (1.14) into 
account 

o (.I) = Q (n 1 -2)-l T (2 f2)-’ (1 i 2r) f' (zr) - x (I) (1.16) 

z(x)=& ;; x’ (5) I! (5) -1’(r)] d' 
c s-z = 

-1 

(1.15) 

Differentiating the integral (1.17) formally n times with respect to 5 and using (7.4) 
from /a/, we obtain 
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The function %* (s, 5) satisfies the Holder condition for / .r j < 1, ) E I<‘_ 1. From the 
boundedness of the function X(E)x* (2, E) for /s I,< 1,/E I< 1 the uniform convergence, with 
respect to r of the integral (1.18) follows. 
is thereby also given a foundation. 

Differentiation under the sign of this integral 
Therefore, x(“) (s) is a continuous function and the thoerem 

is proved. 

Theorem 2. If the function f (2) E I?:_, (-1, I), n > 0. 1,4 < a 
is satisfied: 

and the following relationshrp 

(l.lY) 

then the solution of the integral equation (1.9) has the form 

4 (2) = rli (r) Y(J), $(r) E c, (-1, 1) 

To prove the theorem, taking into account the value of the integral 

(1.2Oj 

and relationship (1.19)) relationship (1.11) must be converted to the form 

(1.2’7) 

Furthermore, the proof is analogous to the proof of Theorem 1. We note that conditicn 
(1.19) is equivalent to the condition o(-_l)- 0. 

Theorem 3. If the function I(J)= HE., (-1. I), II > 0; 0< a,( 1, and the solution of the 

integral equations (1.1) exists in L, (-1, I). p > 1, then the solution q(s) of this equation 

has the following form for all A- (0, co) 

4 (.rj = R (.I.) X-1 (I). 0 (s) - r,, (-1, 1) (l.Z'cj 

Here L, (-1,l) is the space cf absolutely surmmable functions with power p for zlz-I. 

II /7/. 

Theorem 4. If the function 1 (s) G Hz_, (-1. 1). 11 :, ~1. 1 I < SL < 1, and the solution of the 

integral Eq.(l .lj exists in L,,(-l.l).~) 1, and the condrtlon 

!> (-1) = 0 (1.94) 

is satisfied, then the solution q(.L) of this equation has the following form for i, E (0, oc): 

q (.I) = Y (J) 1. (dj. Y (.T) z c,, (-1. 1) (1.25) 

The proof of Theorems 3 and 4 is constructed by using Theorems 1 and 2 and Lemma 1, and 

is analogoustothe proof of Theorems 24.1 and 24.2 in /2/. 

Lemma 2. If the function .t (.I) E Hz., (-1. 1). 0 < a. c; 1, then any solution of the integral 

Eqs.(l.l) or Cl.8! from the class L,(-I: 1), Ji> 1 is also a solution of the integral equation 

and conversely. The integral on the right side of (1.8) is a continuous function will ail its 

derivatives with respect to r for SE [-I,11 and A-_= (0,~) because of the properties of 

the function F(t) and the condition q(x)-z L,(-_1,1), p> 1 . Taking account of (1.13) when 
using the inversion formula (l.llj, we obtain (1.26)-(1.28). The possibility of changing 

the order of integration in the double integral in (1.26)-(1.27) is based on utilizing the 
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properties of the functions q(z) and F(1) and the lemma from Sect.7 in /5/. The converse 

assertion of the lemma results from the possibility of converting from (1.26)-(1.28) to (1.1) 

for a(2)CLi,(--l, I), p> 1. 
If f(x)= Hra(-_1,$), O(a,< 1, then by virtue of Theorem 3 the solution of the integral 

Eq.(1.8) in the class q(s)GL,(-~, I)+P> 1 can be sought in the from (1.23), where Q(x)E 
C(-f,~). In this case, (1.26) can be represented in the form 

A@)=& j -gg.U(*,I)d~ 
--I 

(1.29) 

(1.3U) 

(1.31) 

Lemma 3. The operator A defined by (1.31)) acts in the space C(-{,I). 
To prove the lemma, by taking account of (1.14) the function M (2, 5) should be converted 

to the form 

(1.32) 

The proof of the lemma is furthermore analogous to the proof oi Lemma 25.2 in /2/. 

Theorem 5. Let the function f(x) C HI” (- 1,1), O< a < 1 and let the following inequality 
hold 

h> i"3 = 4 [/I, T l'D12 f '),3&] (1.33) 

D, = mas 1 P' (i) 1, D, = mas 1 F” (1) I, t E IO, ~1 

Iri this case the solution of integral Eq.cl.29) in the class C(--1, 1) exists, is unique, 
and can be obtained by usccessive approximations according to the scheme 

Qn (I) = Q" (r) -j- A (Q’+‘) (1.34) 

To prove the theorem, we estimate \ .?I (J, g) I. From (1.32) we obtain 

Taking account of (1.35) we determine from (1.31) 

(1.36) 

from which it follows that the operator A is contractive in C(-1,l) when condition (1.33) 
is satisfied by virtue of the Banach "fixed-point" principle. 

We examine a more convenient means for constructing the approximate solution of the 
integral Eq.cf.26) for large values of the parameter h. We will seek the solution of this 
equation in the form /2/ 

'i(&Os*(O-n (1.37) 

Substituting (1.37) and (1.6) into (1.26) and (1.27), using (1.14) and then equating 
terms of identical powers of i on the left and right sides of the equation obtained, we arrive 
at the following infinite system of equations for the sequential determination of the function 

%l (x): 

etc. It CM be shown that the function g,,(z) should satisfy the condition 
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Condition (1.39) can be used to check on the correctness of the determination of the 
functions qn(z) and to facilitate finding them by means of (1.38). Cutting off the process 
of determining the functions & (L) we obtain the approximate solution of the integral Eq.(;.lj 
in the form 

4:+=&,fs!i"-~ +o@-N-rj (1.40) 

Iiaving found the functions &(.r), the constant P is determined from the following equation 
that results from (1.28) 

Q(ln4h+bo)= +- _jl +-- 1 e-2) (1.41) 

The solution obtained for the integral Eq.il.1) can be used for jL> h, = rnas(h,,&) 

2. As an example, we consider the following problem. Let a domain occupied by an elastic 
medium be the infinite layer jy 1 .<h, [~I<cu, I:/( X. For [z~.<u, /z~<w in the y=~ plane, 
there is a thin stiff strip. The upper face of the strip is attached to the elastic medium 
while the lower face is detached from the medium. Under the action of a force T (referred tc 
unit length of the strip!, the strip shifts an amount f in the direction of the z-axis. We 
shall also consider that the lower face cf the elastic layer is attached to an undeformable 
foundation while the upper face is load-free. 

This problem is reduced to the solution of the integral Eqs.(l.l), 11.2) by the method 
of integral transforms. Here 

Here CI is the shear modulus, T(Z) is a function characterizing the shear stress distribution 
in the domain of strip contact with the elastic medium, and U.(~,y) is the projection of 
displacement vector on the s-axis. Evaluating the integrals in (1.7) by taking account 
the values of the knctions _~,(u,I, we obtain 

bo = in +, & = 

P (P-1 - 1) B,,, 

42” ?I (2fz)! 
,,?=I,?:...! 

The B,,, in (2 . _ 21 are Bernoulli numbers, and the E, are Euler numbers /3/. From (2.1) 

il.51 we determine zI = 4, x2 = 2, D, = f. D, = I'?. Therefore X, = f. .k2 = 1, = 1.616. In practice, 

and (1.43; can be used for ?._a2 for the case under consideration. 
The dependence of the quantity T,= ~(P+E!-' on the parameter i. obtained by .usrng (1.33: 

and (2.1)-!2.3), is repxesented in the figure. For $I)< ?.dm 

1'* = [in (32i..?-')]-' (2.4 
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As i-00, the dependence between the force T and the 
magnitude E of the strip displacement is impossible to determine. 

The solution of the integral Eq.cl.1) can also be constructed 
by the method of orthogonal polynomials. It is here convenient 
to use the spectral relation (6.7) from Table A in /l/. 

We note that the function characterizing the contact stress 
distribution in axisymmetric problems about thin detached 
inclusions in elastic bodies is expressed in terms of the solution 
of an equation of the form (1.1) by using a certain integral 
operator. The condition that this function belongs to the space 
L,,~>I results in the need to construct a solution of (1.1) in 
the form (1.25). 
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